LogoLogo
Product
  • Knowledge Base
  • What's New
  • Guides
  • User Story Coverage
    • Getting Started
    • User Story Challenges & Solution
      • Typical Implementation
      • The Challenges
      • The Solution
    • User Story Coverage Report Overview
      • Release Go / No Go Report
        • How to Generate / Edit the Report
      • User Story Quality Overview
        • How to Generate the User Story View
      • User Story Coverage Analysis
        • How to Generate the Analysis View
      • Uncovered Methods View
        • How to Generate the View
      • Customization
      • Integration
    • Use Cases by Persona
      • Managers
        • Informed Go/No Go Decisions Making
        • Effective Resources Prioritization
        • Overall Progress Monitoring
      • Developers
        • Code Quality Ownership
        • Seamless Collaboration with QA
        • Code Review Facilitator
      • QA Engineers
        • Test Execution Progress Monitoring
        • Testing Effort Prioritization
        • Testing Strategy Planing
    • Technical Overview
      • User Story Coverage Mechanism
      • Technical Architecture
      • Deployment Guide
        • US1_getResults.sh
        • US2_createReport.sh
        • US_UpdateConfluence.sh
  • Test Optimization
    • Getting Started
    • Test Execution Challenges & Solution
      • The Challenges
      • Test Optimization Solution
      • Test Optimization Main Advantages
    • Test Optimization Overview
      • Automated Test Optimization
      • Manual Test Optimization
      • Test Optimization for Pull Request
      • Test Selection Policies
        • Full Run Policy
        • No Code Changes Policy
        • Common Code Policy
        • Fastest Path to 100% Coverage Policy
      • Integrations
    • Use Cases by Persona
      • Managers
        • Fast Delivery
        • Resource Optimization
        • Thorough Testing in Tight Schedule
      • Developers
        • Exploring Only Relevant Test Failures
        • Faster Feedback Loop
        • Shift Left Testing
      • QA Engineers & Manual Testers
        • Faster & Focused Manual Testing
        • Optimizing Test Suite
        • Having Stable Product for Testing
    • Technical Overview
      • Test Optimization Mechanism
        • Associating Code With Tests
          • Statistical modeling
          • One-to-One Mapping
          • Calibration
        • Detecting Modified Code
        • Generating Test Recommendations
      • Technical Architecture
      • Deployment Guide
  • Quality Improvement
    • Getting Started
    • Challenges & Approach Comparison
      • The Challenges
      • Quality Improvement Approaches
      • Choosing the Right Approach
    • Quality Improvement Solution Overview
      • Test Gaps Analysis Report
        • How to Generate / Edit the Report
      • Coverage Trend Report
        • How to Generate / Edit the Report
      • Proof of Testing Report
        • How to Generate / Edit the Report
      • Release Quality Improvement Guide
        • STEP 1: Deploy SeaLights
        • STEP 2: Take a Quality Snapshot
        • STEP 3: Prioritize Code Areas
          • Add Code Labels
          • Ignore Irrelevant Code
          • Perform a Deep CSV Analysis
        • STEP 4: Set Baseline & Threshold
        • STEP 5: Analyze Test Gaps
        • STEP 6: Write Tests
        • Step 7: Make a Go / No Go Decision Based on Quality Gate
        • STEP 8: Measure Defect Escape Rate
      • Over Time Quality Improvement Guide
        • STEP 1: Deploy SeaLights
        • STEP 2: Take a Quality Snapshot
        • STEP 3: Prioritize code areas
          • Add Code Labels
          • Ignore Irrelevant Code
          • Perform a Deep CSV Analysis
        • STEP 4: Set Baseline & Goal
        • STEP 5: Set timeline
        • STEP 6: Write tests
        • STEP 7: Monitor progress
        • STEP 8: Measure Defect Escape Rate
    • Use Cases by Persona
      • Managers
        • Effective Prioritization & Budget Allocation
        • Tracking Progress & Measuring Impact
        • Data-Driven Release Decisions
        • Transparency & Communication
      • Developers
        • Mastering Code Coverage
        • Seamless Collaboration with QA
        • Code Quality Ownership
      • QA Engineers
        • Prioritizing Test Efforts
        • Contributing to Release Informed Decisions
        • Seamless Collaboration with Developers
        • Evaluating Testing Strategy
    • Technical Overview
      • Solution Mechanism
      • Technical Architecture
      • Deployment Guide
  • Value Proposition
    • Overview
    • Quality Use Cases
      • Go/No Go Decisions
      • Quality Improvement & Test Gaps
      • Governance & Quality Gates
      • Compliance & Proof of Testing
    • Test Optimization Use Cases
      • Reduce Costs & Infrastructure
      • Shorten Release Cycles
      • Reduce Troubleshooting
Powered by GitBook
On this page

Was this helpful?

  1. Test Optimization
  2. Use Cases by Persona
  3. Developers

Exploring Only Relevant Test Failures

Test optimization saves developers valuable time by filtering out irrelevant test failures and highlighting only those directly linked to their code changes. This targeted approach eliminates the need to spend time investigating unrelated issues, allowing developers to focus their energy on resolving problems truly impacted by their work. This not only improves developer efficiency and reduces frustration but also helps them:

  • Identify the root cause of issues quicker: By focusing on impacted areas, developers can pinpoint the specific lines of code causing the failure and address them efficiently.

  • Prioritize bug fixes effectively: Understanding which failures are directly related to their changes allows developers to prioritize bug fixes based on potential impact and urgency.

  • Reduce debugging time: Eliminating irrelevant noise from test failures significantly reduces the overall debugging time, allowing developers to move on to new features or bug fixes faster.


Step-by-Step Tutorial

1. Integrate the Tool

Choose and integrate a test optimization tool into your development pipeline. Create a build that executes all your tests as a starting point for the Test Impact Analysis (TIA) engine to map tests to relevant code sections.

2. Trigger Focused Testing

After making code changes, initiate the testing process through your CI/CD pipeline. TIA will analyze your changes and recommend a focused test suite, automatically executing only the tests directly related to your modifications, reducing overall testing time.

3. Review Targeted Results

Once the tests complete, access the results through your test management tools. You'll see only the tests selected by the TIA, ensuring you focus on the most relevant information related to your specific code changes.

4. Analyze and Address Issues

Carefully analyze any test failures to understand the issues and their potential impact on the application.

5. Debug and Fix

Resolve the identified issues by debugging the specific code sections highlighted by the test failures, ensuring your changes haven't introduced unintended consequences.

Implementing test optimization empowers developers to work smarter, not harder, and ultimately deliver high-quality code more efficiently.

PreviousDevelopersNextFaster Feedback Loop

Was this helpful?